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Abstract

Contact loading of orthotropic materials is of interest in impact problems and other applications with composite

materials. Although solutions are available for special cases such as transversely isotropic materials, solutions for

contact loading for more general orthotropic materials have appeared much less frequently in the literature. The present

work shows that a general procedure for calculating stresses due to contact loading can be obtained by combining two

previous solution techniques. The first is the procedure outlined by Willis, that uses numerical contour integration to

determine the size and aspect ratio of the elliptical contact area, and the contact pressure distribution. Detailed stress

fields are then obtained by using these parameters in the general solution for transverse pressure loading of laminated

orthotropic materials due to Pagano and Srinivas and Rao. Comparisons with known results for special cases, along

with comparisons of surface displacements and the indentor profile, indicate that good accuracy of the solution can be

achieved.
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1. Introduction

Hertzian contact of orthotropic materials is of interest in a number of applications, including those

associated with foreign body impact in composite materials. Contact loading poses a mixed boundary value

problem, as displacements are specified inside the loading area and tractions outside, and further the size

and shape of the contact zone are initially unknown and are part of the solution. A variety of solutions are
available and have been summarized by Johnson (1985), for various problems which include such com-

plicating factors as friction in the contact zone. However solutions for non-isotropic materials are much less

available. Work on contact loading of transversely isotropic materials has been presented by Green and

Zerna (1954), Leknitskii (1963), Sveklo (1964), Dahan and Zarka (1977), and in a particularly convenient

form by Turner (1966). A numerical approach to the contact problem for orthotropic materials has been

recently presented by Shi et al. (2003). A procedure for determining some of the features of the contact
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problem for generally anisotropic materials has been given by Willis (1966), that involves numerical con-

tour integration.

It has been widely appreciated that if the contact loading zone size and shape, and the pressure distri-

bution over the contact zone were known, the details of the contact stresses could be investigated with
simpler solutions of problems with entirely stress-prescribed boundary conditions. One such solution that is

available for transverse pressure loading of orthotropic materials is that due to Pagano (1970) and Srinivas

and Rao (1970). This solution is given in terms of Fourier series expansions of transverse pressure loading

on layered orthotropic materials with simply supported edges. By selecting suitable geometries, this solu-

tion can be readily adapted to determining stresses in orthotropic materials, once the contact zone and

pressure have been determined.

Some approximate procedures have been utilized to obtain insight into contact loading of orthotropic

materials. Yang and Sun (1982) and Tan and Sun (1985) assumed that the contact pressure and contact
area could be obtained from the usual formulas for isotropic materials, but with the isotropic modulus of

elasticity replaced by the orthotropic modulus in the loading direction. Wu and Yen (1994) and Chao and

Tu (1999) have used the Pagano solution as a Green�s function approximating a point load, and then

numerically associated the resulting surface displacements to the indentor geometry. However it is difficult

to assess the resulting accuracy.

The 2-D problem of contact of a plane stress or plane strain strip by a cylindrical roller is simpler than

the 3-D problem, and a solution for general anisotropic materials has been presented by Miller (1986) and

Chen (1969).
No results have appeared in the literature that utilize the approach outlined by Willis (1966), possibly

because it appears difficult to obtain the full solution from this method. However, in the following it will be

shown that the procedure of Willis can be readily applied to determine the contact area and pressure

distribution for orthotropic materials, which can then be combined with the Pagano solution to determine

as much information about the resulting stress and strain fields as desired. Results will be given for

orthotropic materials, as well as for the simpler case of transversely isotropic materials to assess accuracy.
2. Point loading of an anisotropic half-space

Willis (1966) first develops the solution for point loading of an anisotropic half-space. This solution will

be briefly outlined in the following: Consider that the x3 direction is normal to the surface of the half-space.

The equilibrium equations are written as usual as
rij;j ¼ 0; ð1Þ

where a repeated subscript denotes a summation, and the comma denotes differentiation. The stress–strain

law for a generally anisotropic material can be written as
frg ¼ ½C�feg; ð2Þ

where
frgT ¼ f r11 r22 r33 r23 r31 r12 g;
fegT ¼ f e11 e22 e33 2e23 2e31 2e12 g:
The stress–strain relationship for orthotropic materials reduces to
r11

r22

r33

8<
:

9=
; ¼
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The strains are related to the displacements through the usual strain–displacement relationship:
eij ¼
1

2
ðui;j þ uj;iÞ: ð4Þ
Substituting the stress–strain and strain–displacement relations into the equations of equilibrium gives the

following: The case of an orthotropic material given by Eq. (3) will be displayed, although Willis retains the

general form of an anisotropic material of Eq. (2). The resulting field equations are
C11u1;11 þ C66u1;22 þ C55u1;33 þ ðC12 þ C66Þu2;12 þ ðC13 þ C55Þu3;13 ¼ 0;

C22u2;22 þ C66u2;11 þ C44u2;33 þ ðC12 þ C66Þu1;12 þ ðC23 þ C44Þu3;23 ¼ 0;

C33u3;33 þ C55u3;11 þ C44u3;22 þ ðC13 þ C55Þu1;12 þ ðC23 þ C44Þu2;23 ¼ 0:

ð5Þ
Define the Fourier transform as
~f ðn1Þ �
1ffiffiffiffiffiffi
2p

p
Z 1

�1
f ðx1Þ expðin1x1Þdx1 ð6Þ
and taking Fourier transforms of Eqs. (5) with respect to x1 and x2 gives
ðC11n
2
1 þ C66n

2
2Þ~u1 � C55~u1;33 þ n1n2ðC12 þ C66Þ~u2 þ in1ðC13 þ C55Þ~u3;3 ¼ 0;

n1n2ðC12 þ C66Þ~u1 þ ðC66n
2
1 þ C22n

2
2Þ~u2 � C44~u2;33 þ in2ðC23 þ C44Þ~u3;3 ¼ 0;

in1ðC13 þ C55Þ~u1;3 þ in2ðC23 þ C44Þ~u2:3 þ ðC55n
2
1 þ C44n

2
2Þ~u3 � C33~u3;33 ¼ 0:

ð7Þ
Now assume the solution in the form
~u1
~u2
~u3

8<
:

9=
; ¼

A1

A2

A3

8<
:

9=
; expðimx3Þ: ð8Þ
Substituting (8) into (7) gives
m2 þ C11

C55
n21 þ C66

C55
n22

C12þC66

C55
n1n2 �mC13þC55

C55
n1

m2 þ C66

C44
n21 þ C22

C44
n22 �mC23þC44

C44
n2

sym m2 þ C55

C33
n21 þ C44

C33
n22

2
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:

9=
; ¼

0

0

0

8<
:

9=
;: ð9Þ
Redefining the material constants as
b1 ¼
C11

C55

; b2 ¼
C66

C55

; b3 ¼
C66

C44

; b4 ¼
C22

C44

; b5 ¼
C55

C33

;

b6 ¼
C44

C33

; b7 ¼
C12 þ C66

C55

; b8 ¼
C13 þ C55

C55

; b9 ¼
C23 þ C44

C44

ð10Þ
and further defining
e1 ¼ b1 þ b3 þ b5 � b28; e2 ¼ b2 þ b4 þ b6 � b29; e3 ¼ b1b3 þ b1b5 þ b3b5 � b3b28;

e4 ¼ b2b3 þ b1b4 þ b2b5 þ b4b5 þ b1b6 þ b3b6 þ 2b7b8b9 � ðb4b28 þ b1b29 þ b27Þ;
e5 ¼ b2b4 þ b2b6 þ b4b6 � b2b29; e6 ¼ b1b3b5; e7 ¼ b2b3b5 þ b1b4b5 þ b1b3b6 � b5b27;

e8 ¼ b2b4b5 þ b2b3b6 þ b1b4b6 � b6b27; e9 ¼ b2b4b6

ð11Þ
and setting the determinant of the coefficient matrix to zero gives a cubic equation in m2 as
m6 þ ðe1n21 þ e2n
2
2Þm4 þ ðe3n41 þ e4n

2
1n

2
2 þ e5n

4
2Þm2 þ ðe6n61 þ e7n

4
1n

2
2 þ e8n

2
1n

4
2 þ e9n

6
2Þ ¼ 0: ð12Þ
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This equation has three roots for m2 and six roots for m given by
mk ¼ �
ffiffiffiffiffi
a2j

q
; j ¼ 1 : 3 k ¼ 1 : 6: ð13Þ
Substituting these roots back into the first two equations of (9) gives the ratio of the coefficients from
m2 þ b1n
2
1 þ b2n

2
2 b7n1n2

b7n1n2 m2 þ b3n
2
1 þ b4n

2
2

" #
A1=A3

A2=A3

� �
¼ mb8n1

mb9n2

� �
ð14Þ
with the resulting transformed displacements given as
~u1
~u2
~u3

8<
:

9=
; ¼

X6
k¼1

ðA1=A3Þk
ðA2=A3Þk

1

8<
:

9=
;A3k expðimkðn1; n2Þx3Þ: ð15Þ
The six constants are determined from the boundary conditions for a point load on a half-space. The

condition that the displacements be finite far from the load indicates that only the roots with positive

imaginary parts be retained. The remaining three constants are determined from the stress boundary
conditions on the surface, which are
r13ðx1; x2; 0Þ ¼ 0; r23ðx1; x2; 0Þ ¼ 0; r33ðx1; x2; 0Þ ¼ �dðx1Þdðx2Þ: ð16Þ

Substituting the stress–strain and strain–displacement relations, and taking Fourier transforms gives the

following equations:
X3
k¼1

½mkðA1=A3Þk � n1�A3k ¼ 0;

X3
k¼1

½mkðA2=A3Þk � n2�A3k ¼ 0;

X3
k¼1

½C13n1ðA1=A3Þk þ C23n2ðA2=A3Þk � C33mk�A3k ¼
�i

2p
:

ð17Þ
The remaining three constants are determined from Eqs. (17), and thus the solution is obtained for the

Fourier transformed displacements, for the problem of a point load on an orthotropic half-space, in terms

of the transform parameters n1 and n2.
3. Solution of the contact problem

The above solution for the displacements due to a unit point load is integrated over the contact area and
contact pressure to obtain the displacements due to the contact loading, and then matched to the indentor

geometry. Willis conditionally assumes, and subsequently proves, that the contact area is an ellipse with

dimensions 2a1 · 2a2, with values to be determined subsequently, and that the pressure distribution is given

by
pðx1; x2Þ ¼ p0 1

�
� x21
a21

� x22
a22

�1=2

: ð18Þ
The surface displacement is then given by
u3ðx1; x2; 0Þ ¼
Z
S

Z
p0 1

�
� x021

a21
� x022

a22

�1=2

wðx1 � x01; x2 � x02Þdx01 dx02; ð19Þ
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where S denotes the contact area, and the surface displacement due to the point load is denoted as w, as
wðx1; x2Þ � u3ðx1; x2; 0Þ: ð20Þ

While w has not been found explicitly, its Fourier transform is given in Eq. (15). Substituting the inverse

Fourier transform of the surface displacement into (19) gives
u3ðx1; x2; 0Þ ¼
Z
S

Z
p0 1

�
� x021

a21
� x022

a22

�1=2
1

2p

Z 1

�1

Z 1

�1
~wðn1; n2Þ exp½�iðn1ðx1 � x01Þ

þ n2ðx2 � x02ÞÞ�dn1 dn2 dx01 dx02: ð21Þ
Willis reduces the above to a single line integral that can be carried out with numerical integration. The

integral becomes
u3ðx1; x2; 0Þ ¼ p0
pa2
4

Z 2p

0

~wðeg1; g2Þ 1

(
� g1x1

a1

�
þ g2x2

a2

�2
)
dh; ð22Þ
where
e � a2
a1

; g1 ¼ cos h; g2 ¼ sin h: ð23Þ
The contact force is related to the peak contact pressure by
F ¼ 2

3
p0pa1a2: ð24Þ
The relative displacement of the indentor and half-space can be expressed in the form
wI þ whs ¼ a� ðAx21 þ Bx22 þ 2Hx1x2Þ: ð25Þ

In the special case of a rigid indentor
A ¼ 1

2R1

; B ¼ 1

2R2

ð26Þ
and for an orthotropic material, where the axis of the elliptical contact area is aligned with the axes of

orthotropy,
1

2R1

¼ 3FI1
8a31

;
1

2R2

¼ 3FI2
8a1a22

; d ¼ 3FI3
8a1

¼ 3F
4
ffiffiffiffiffi
R1

p
� �2=3 I3

2I1=31

 !
; ð27Þ
where
I1 ¼
Z 2p

0

~wðeg1; g2Þg21 dh; I2 ¼
Z 2p

0

~wðeg1; g2Þg22 dh; I3 ¼
Z 2p

0

~wðeg1; g2Þdh: ð28Þ
From (27), it can be seen that
I2
I1
¼ a22

a21

R1

R2

¼ e2
R1

R2

: ð29Þ
Solving for a1, a2, and d for a rigid spherical indentor gives
a1 ¼
3RF
4

� �1=3

I1=31 ; a2 ¼
3RF
4

� �1=3 I1=22

I1=61

; d ¼ 3F

4
ffiffiffi
R

p
� �2=3 I3

2I1=31

: ð30Þ
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The solution algorithm for contact loading of an orthotropic half-space can then be written as follows:

Step 1. Select a starting value for e (say e ¼ 1).

Step 2. Compute the integrals I1 and I2 of Eq. (28).
The integrals are computed by incrementing h, using g1 ¼ cos h and g2 ¼ sin h. Then set n1 ¼ e cos h and

n2 ¼ sin h. Compute the roots and solve for the coefficients A3k from Eq. (17). This gives
~wðeg1; g2Þ ¼
X3
k¼1

A3k: ð31Þ
The integrals are then determined by numerically integrating these functions to get I1 and I2.
Step 3. A new value of e is determined from Eq. (29). This value can then be used in step 1, and steps

1–3 repeated until the solution for e converges. This can be considered as a root finding pro-

blem for e. Any root finding algorithm (the simple bisection method was used here) can be

employed.

Step 4. Once a converged value of e is obtained, the complete solution can be obtained by computing I3,
and using Eq. (30) to determine the size of the contact zone and the depth of the indentation for a

given contact force.
4. Illustration of determining contact parameters

4.1. Cubic media

Willis (1966) presents results for a special class of orthotropic materials, termed cubic media. This class

of materials has three independent material constants, and the stress–strain relationship is given by
r11

r22

r33

8<
:

9=
; ¼

kþ 2l0 k k
k kþ 2l0 k
k k kþ 2l0

2
4

3
5 e11

e22
e33

8<
:

9=
; and

r23

r31

r12

8<
:

9=
; ¼

l 0 0
0 l 0

0 0 l

2
4

3
5 2e23

2e31
2e12

8<
:

9=
;: ð32Þ
Because of the symmetry of the material properties, the contact area is a circle and e ¼ 1. As a specific

example, the computations above were carried out for values of E ¼ 70 GPa, m ¼ 0:3 and l=l0 ¼ 8. Thus

k ¼ mE=ð1þ mÞð1� 2mÞ ¼ 40:38 GPa, l0 ¼ E=2ð1þ mÞ ¼ 26:92 GPa, and l ¼ 215:38 GPa. Plots of the

functions f1, f2, and f3 (normalized by multiplying by E33 ¼ E) that are the integrands of I1, I2, and I3,
respectively, are shown in Fig. 1. The values of the integrals are I1 ¼ I2 ¼ 7:117E � 3 GPa�1, and

I3 ¼ 1:423E � 2 GPa�1. These results agree with those presented by Willis (1966).
4.2. Transversely isotropic materials

Solutions for contact problems with transversely isotropic materials have been presented by a number of

authors, and thus offer an opportunity to compare with the present contour integration approach. A

general solution has been presented by Turner (1966), who shows that the contact zone and size can be
found from formulas similar to those for isotropic contact problems, if the isotropic modulus is replaced by

a combination of the transversely isotropic properties. Thus for normal contact
a ¼ 3RF
4E�

TI

� �1=3

and d ¼ 3F

4
ffiffiffi
R

p
E�
TI

� �2=3

: ð33Þ
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Fig. 1. Functions used in numerical contour integration for contact loading of a cubic media orthotropic material.
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Turner defines the effective modulus as follows: Let
a ¼ Ex=Ez � m2xz
1� m2xy

 !1=2

and b ¼
1þ Ex

2Gxz
� 1

� �
� mxzð1þ mxyÞ

1� m2xy
; ð34Þ
then
E�
TI ¼

2

ab

� �
: ð35Þ
This effective modulus for transversely isotropic normal contact reduces to E=ð1� m2Þ for isotropic

materials. As a specific example, values of Ex ¼ 51:3 GPa, mxy ¼ 0:292, Ez ¼ 12 GPa, mxz ¼ 0:28, and Gxz ¼ 6

GPa were used. These values correspond to a transversely isotropic laminate of AS4 carbon fiber and epoxy

(Swanson, 1997). The resulting value from Eq. (35) is E�
ti ¼ 14:61 GPa.

Comparable results can also can be calculated using contour integration as described above. However,

the first two equations of (17) are not independent. Letting the material properties approach the trans-

versely isotropic case shows that the coefficient corresponding to the middle root approaches zero. Thus

only the first and third of Eq. (17) need be used, to solve for the two remaining coefficients. Comparing Eqs.
(27) and (33) shows that
E�
TI ¼

2I1=31

I3

 !3=2

: ð36Þ
The functions for the integrals for this case are shown in Fig. 2, normalized as before by multiplying by E33.

The numerical integration of these functions gives I1 ¼ I2 ¼ 6:843E � 2, I3 ¼ 0:1369 GPa�1. Using Eqs. (27)

and (33), it can be seen that these values agree with Eq. (35), and thus the Turner and Willis numerical
contour integration results are in agreement.
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Fig. 2. Functions used in numerical contour integration for contact loading of a transversely isotropic material.
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The transversely isotropic material is a special case, and can be solved using the Willis approach without

using numerical integration. The simplification of the material properties permits Eq. (12) to be written as
m6 þ e1ðn21 þ n22Þm4 þ e3ðn21 þ n22Þ
2m2 þ e6ðn21 þ n22Þ

3 ¼ 0 ð37Þ
permitting m to be solved for explicitly and the rest of the computation can then be carried out analytically,

as shown by Willis (1966). This approach then leads to the same answers as above.

Yang and Sun (1982) and Tan and Sun (1985) have proposed an approximation for the contact

deformation, by using the second of Eq. (33) with E� simply replaced by Ez. The accuracy of this

approximation can be checked for transversely isotropic materials by comparing with the exact results

given here. The results of this comparison are shown in Fig. 3. Here the transversely isotropic material

properties used above are modified so that Ez, Gxz, and mxz are all modified so that they uniformly approach
an isotropic material. Since the effective modulus of Eq. (35) depends on all of the properties and not just

Ez, the approximation of Sun et al. holds exactly only for the isotropic case, and decreases in accuracy

as Ez differs from Ex. This can be seen in Fig. 3. The error of the Sun et al. approximation is on the order of

22% for material properties typical of carbon fiber laminates.

4.3. General orthotropic material

The results given above are similar to those available in the literature, and have served primarily to

establish that the method is working properly. However the numerical contour integration procedure as

outlined above can be used to calculate the parameters of the contact problem for more general orthotropic

materials, and results of this type have not previously appeared in the literature.

The orthotropic material considered in the following is made up of a ‘‘well dispersed’’ laminate con-

sisting of various numbers of 0 and 90� plies of a carbon/epoxy material. The properties of a unidirectional

lamina are given in Table 1. Orthotropic properties are then calculated for other layups using standard
lamination theory. In all cases, the properties are then averaged through the thickness so that a single
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Table 1

Material properties of an orthotropic lamina used in contact loading

Property Value Property Value

E11 127 GPa E33 12 GPa

E22 11 GPa G13 6 GPa

G12 6.55 GPa G23 6 GPa

m12 0.28 m13 0.28

m23 0.28
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equivalent orthotropic material is being considered. As an example, consider that of an orthotropic
material equivalent to a unidirectional lamina, with the x axis taken in the fiber direction or the 1, 1

direction of Table 1. Following the procedure described above gives a final converged value of e ¼ 1:069.
The functions f1, f2, and f3 for this value of e are shown in Fig. 4, and the resulting numerical integrations

give values of I1 ¼ 6:338E � 2, I2 ¼ 7:250E � 2, and I3 ¼ 0:1359 GPa�1. Substituting these values into Eq.

(30) gives the contact size and center indentation for a given contact force. It is interesting to note that even

with properties as directional as used in this example, with Ex=Ey ¼ 11:5, the difference between the major

and minor axes of the elliptical contact area is about 7%.

Further calculations were performed using orthotropic properties obtained from lamination theory as
described above. The results from these calculations are shown in Fig. 5. Fig. 5 shows the ratio of the axes

of the elliptical contact area, a2=a1, as a function of the ratio of the in-plane moduli. Fig. 5 also shows two

additional parameters related to the contact size and the deflection at the center of the contact area. Eq. (30)

can be written as
a1 ¼
3RF
4

� �1=3

I1=31 or a1 ¼
3RF
4E�

a1

� �1=3

with E�
a1 ¼

1

I1
; ð38Þ

d ¼ 3F

4
ffiffiffi
R

p
� �2=3 I3

2I1=31

or d ¼ 3F

4
ffiffiffi
R

p
E�
d

 !2=3

with E�
d ¼

I1=21

ðI3=2Þ3=2
: ð39Þ
The values of the effective moduli in these two equations are also plotted in Fig. 5.
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5. Stresses due to contact loading

Although some information on the stresses in the half-space due to the contact loading can be obtained

from the contour integrals, it is simpler to just use the pressure distribution and size of the contact zone

from the above, and then use the solution due to Pagano (1970) and Srinivas and Rao (1970), to obtain

more detailed information. As mentioned above, this latter approach gives a complete solution for a
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layered orthotropic material subject to arbitrary transverse pressure loading on the surface. The solution is

general with respect to the number of the layers, the orthotropic material properties, and the thicknesses of

the layers, but requires that the transverse displacement on the edges be zero, and that the normal stresses

on the edges be zero. These conditions are considered to represent simply supported edges. By selecting a
single layer that is large in the x and y directions and thick in the z direction with respect to the size of the

contact area, the solution can be made to approximate transverse pressure loading of a half-space. The

usual difficulty in applying this solution to contact problems is that the size and shape of the contact zone

and pressure distribution are typically not known. However, as shown above, these parameters of contact

loading of a half-space can readily be determined by using numerical contour integration.

The equations of the Pagano and Srinivas and Rao approach have been presented previously for the 3-D

case in Swanson (2000), and have been used for contact problems in Wu and Yen (1994) and Chao and Tu

(1999), and for 2-D contact in Swanson and Kim (2003). The details of the approach will not be repeated
here, but one particular point will be made.

In the Pagano and Srinivas and Rao solution the displacements are obtained in terms of products of

Fourier series in x and y and positive and negative exponentials in z, as
umnðx; y; zÞ ¼
X3
k¼1

Akmn expðskzÞ
(

þ
X6
k¼4

Akmn expð � sk�3zÞ
)
cos

mpx
a

sin
npy
b

: ð40Þ
The terms with positive exponentials give rise to numerical difficulties, and limit the number of terms
that can be taken in the Fourier series. However, as shown for the 2-D case in Swanson and Kim (2003),

this can be easily overcome by introducing a new length coordinate and redefining the constants, as follows:

Let
f ¼ h� z; ð41Þ
where h is the thickness of the layer. Substituting in the terms with positive exponentials in z gives, for

example,
A expðszÞ ¼ A expðsðh� fÞÞ ¼ A expðshÞ expð�sfÞ ¼ A expð�sfÞ: ð42Þ
Using this new coordinate enables the solution to be written as
umnðx; y; zÞ ¼
X3
k¼1

Akmn expð
(

� skfÞ þ
X6
k¼4

Akmn expð � sk�3zÞ
)
cos

mpx
a

sin
npy
b

: ð43Þ
Thus only terms with negative exponentials enter the solution, and numerical problems associated with the
positive exponentials are eliminated. The strains are obtained from derivatives of the displacements, noting

that
d

dz
¼ � d

df
:

The stresses are related to the strains by the stress–strain law.

The above approach was then employed to determine the displacements, stresses, and strains throughout

the orthotropic half-space for the contact problems previously considered. The first problem considered is

that of a rigid spherical indentor contacting a transversely isotropic half-space. A contact radius of 1 mm

was used for illustration, with the contact pressure distribution obtained from Eqs. (18), (24), and (30). This

pressure distribution was then used as the transverse pressure loading. The geometry of the Pagano solution

is that of a finite 3-D rectangular solid, but values of the lateral dimensions and thickness on the order of 50
times the contact radius removes the effect of the finite geometry. It is possible, and was done here, to apply

the pressure distribution on both opposite faces of the solid so as to achieve an equivalent rigid boundary at
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the midplane, from symmetry. Fitting of the Fourier series expansions of the pressure was accomplished

using numerical Gauss integration of order 24 or 48.

A comparison of the surface displacements calculated in this way is shown in Fig. 6, along with the

profile of the spherical indentor, using the material properties previously used for the transversely isotropic
material of Fig. 2. It can be seen that the calculated displacement conforms closely with that of the indentor

within the contact zone. Values for the root-mean-square deviation and the maximum deviation of surface

displacement and indentor, normalized to the indentation depth, are on the order of 0.5% or less for typical

calculations, using on the order of 100 terms in the Fourier series expansions. Thus this seems to be a very

reasonable way to solve this contact problem. The Pagano solution can then be used to solve for all dis-

placement, strain, and stress components of interest. For example, the normal strain in a radial direction

along the top surface is shown calculated in Fig. 7. It can be seen that the strains are compressive in the

contact zone, but change to tensile just outside the contact region.
The next problem considered was an orthotropic material, with properties that correspond to a fiber

composite material with a [018/902] layup, and averaged through the thickness to give Ex ¼ 116 GPa,

Ey ¼ 22:7 GPa, Gxy ¼ 6:55 GPa, and mxy ¼ 0:136. The through-the-thickness properties are given in Table 1

The elliptic contact zone and pressure loading obtained as shown in Figs. 4 and 5 along with Eqs. (18), (24),

and (30) were used as input to the Pagano solution. The surface displacements calculated are shown in Fig.

8, along with the profile of the spherical indentor in both the x and y directions. Note that because of the

orthotropic properties, the contact zone is elliptic, with a2=a1 equal to 1.042. It can be seen that the surface

displacements calculated in the contact zone agree very well with the indentor profile, with values for the
root-mean-square deviation and the maximum deviation of surface displacement and indentor, normalized

to the indentation depth, again on the order of 0.5% or less for typical calculations. All stress and strain

values are readily available, as in the previous problem. As an example, the loaded surface normal strains in

the x and y directions are plotted vs x and y, respectively in Fig. 9. Since the problem is not symmetric, these

normal strains are different from each other.
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6. Discussion

The major point of the present work is to show that detailed stress and strain distributions in contact

loading of orthotropic materials are easily obtained by using the numerical contour integration approach of

Willis (1966), to determine the size and shape of the contact area and pressure distribution, and then using

these values to determine the transverse loading that is needed for the approach of Pagano (1970) and

Srinivas and Rao (1970). The accuracy of the solution can be assessed in part by comparison with known

solutions such as for transversely isotropic materials and the depth of indentation for orthotropic materials,

and in part by comparing the calculated surface displacement with the indentor profile. The examples

shown indicate that good accuracy is achieved.
In the solution for contact of orthotropic materials shown in Figs. 5, 8, and 9, it is interesting to note that

the ratio of the axes of the elliptical contact area are not a strong function of the orthotropic material

properties. However the strains shown in Fig. 9 are significantly different in the x and y directions, and the

stresses (not shown) would show an even greater difference.

The use of a rigid spherical indentor in the example problems was employed so as to focus on the

essential steps in the approach. As is well known and discussed in Johnson (1985), for example, it is

straightforward to include a deformable orthotropic indentor, by simply including the deformation of the

indentor in Eq. (25). Further, the Willis solution is in principle applicable to general anisotropic materials,
where the angle between the contact ellipse and the x, y coordinate system becomes an additional unknown.

This angle could presumably be found by a root finding method similar to that used here to find the ratio of

the axes of the contact area. However the Pagano and Srinivas and Rao solution only holds for orthotropic

materials, so that other means, such as finite element analysis, would need to be used to determine the stress

distributions.

It is likely that the procedures displayed above will be useful to obtain approximate solutions for more

general geometries, such as contact loading of laminated materials with finite dimensions. For example,

Swanson and Kim (2003) used an empirical modification of the theoretical pressure distribution obtained
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from Chen (1969), to examine the effects of contact loading in orthotropic sandwich beams. This was

accomplished by using the modified pressure distribution in a 2-D version of the Pagano analysis, and then

minimizing the error between calculated surface displacement and indentor profile. The advantage is that

one can start with a thick beam (or plate) where the half-space analysis would be expected to give good
accuracy, and then systematically modify the geometry to be more specific to the actual finite thickness

structure of interest.
7. Summary and conclusions

The problem of contact loading of an orthotropic half-space is examined. It is seen that a procedure

outlined by Willis that uses numerical contour integration can be readily employed, along with iteration, to

determine several features of the contact analysis, such as the size of the elliptical contact area, the contact

pressure distribution, and the indentation depth. Example calculations were shown to compare with pre-

vious results for transversely isotropic materials, and the results show that good accuracy is achieved. New

results are presented for orthotropic materials. The contact area and contact pressure distribution are then
used with a solution for surface pressure loading of an orthotropic material by Pagano and Srinivas and

Rao to determine the stress and strain fields throughout the region. The results show that for orthotropic

materials under contact loading by a spherical indentor, the contact area is elliptical but differs from cir-

cular by only a modest amount, and that the stress and strain distributions differ significantly from that for

isotropic or transversely isotropic materials.
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