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Abstract

Contact loading of orthotropic materials is of interest in impact problems and other applications with composite
materials. Although solutions are available for special cases such as transversely isotropic materials, solutions for
contact loading for more general orthotropic materials have appeared much less frequently in the literature. The present
work shows that a general procedure for calculating stresses due to contact loading can be obtained by combining two
previous solution techniques. The first is the procedure outlined by Willis, that uses numerical contour integration to
determine the size and aspect ratio of the elliptical contact area, and the contact pressure distribution. Detailed stress
fields are then obtained by using these parameters in the general solution for transverse pressure loading of laminated
orthotropic materials due to Pagano and Srinivas and Rao. Comparisons with known results for special cases, along
with comparisons of surface displacements and the indentor profile, indicate that good accuracy of the solution can be
achieved.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Hertzian contact of orthotropic materials is of interest in a number of applications, including those
associated with foreign body impact in composite materials. Contact loading poses a mixed boundary value
problem, as displacements are specified inside the loading area and tractions outside, and further the size
and shape of the contact zone are initially unknown and are part of the solution. A variety of solutions are
available and have been summarized by Johnson (1985), for various problems which include such com-
plicating factors as friction in the contact zone. However solutions for non-isotropic materials are much less
available. Work on contact loading of transversely isotropic materials has been presented by Green and
Zerna (1954), Leknitskii (1963), Sveklo (1964), Dahan and Zarka (1977), and in a particularly convenient
form by Turner (1966). A numerical approach to the contact problem for orthotropic materials has been
recently presented by Shi et al. (2003). A procedure for determining some of the features of the contact
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problem for generally anisotropic materials has been given by Willis (1966), that involves numerical con-
tour integration.

It has been widely appreciated that if the contact loading zone size and shape, and the pressure distri-
bution over the contact zone were known, the details of the contact stresses could be investigated with
simpler solutions of problems with entirely stress-prescribed boundary conditions. One such solution that is
available for transverse pressure loading of orthotropic materials is that due to Pagano (1970) and Srinivas
and Rao (1970). This solution is given in terms of Fourier series expansions of transverse pressure loading
on layered orthotropic materials with simply supported edges. By selecting suitable geometries, this solu-
tion can be readily adapted to determining stresses in orthotropic materials, once the contact zone and
pressure have been determined.

Some approximate procedures have been utilized to obtain insight into contact loading of orthotropic
materials. Yang and Sun (1982) and Tan and Sun (1985) assumed that the contact pressure and contact
area could be obtained from the usual formulas for isotropic materials, but with the isotropic modulus of
elasticity replaced by the orthotropic modulus in the loading direction. Wu and Yen (1994) and Chao and
Tu (1999) have used the Pagano solution as a Green’s function approximating a point load, and then
numerically associated the resulting surface displacements to the indentor geometry. However it is difficult
to assess the resulting accuracy.

The 2-D problem of contact of a plane stress or plane strain strip by a cylindrical roller is simpler than
the 3-D problem, and a solution for general anisotropic materials has been presented by Miller (1986) and
Chen (1969).

No results have appeared in the literature that utilize the approach outlined by Willis (1966), possibly
because it appears difficult to obtain the full solution from this method. However, in the following it will be
shown that the procedure of Willis can be readily applied to determine the contact area and pressure
distribution for orthotropic materials, which can then be combined with the Pagano solution to determine
as much information about the resulting stress and strain fields as desired. Results will be given for
orthotropic materials, as well as for the simpler case of transversely isotropic materials to assess accuracy.

2. Point loading of an anisotropic half-space

Willis (1966) first develops the solution for point loading of an anisotropic half-space. This solution will
be briefly outlined in the following: Consider that the x; direction is normal to the surface of the half-space.
The equilibrium equations are written as usual as

075 =0, (1)

where a repeated subscript denotes a summation, and the comma denotes differentiation. The stress—strain
law for a generally anisotropic material can be written as

{o} = [CHe}, (2)
where

{G}T = {011 02 033 023 03] 012}7

{S}T = {811 en &3 283 2631 2ep }
The stress—strain relationship for orthotropic materials reduces to

a1l Cu Cn Cis &l 023 Cau 0 O 263
on o= |Cy Cpn Cp €22 and 031 0 = 0 GCs 0 2631 p . (3)
033 Gy Cyp Cy €33 012 0 0 G 2ep,
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The strains are related to the displacements through the usual strain—displacement relationship:

&y = 7 (uiy + ).

3

1947

)

Substituting the stress—strain and strain—displacement relations into the equations of equilibrium gives the
following: The case of an orthotropic material given by Eq. (3) will be displayed, although Willis retains the

general form of an anisotropic material of Eq. (2). The resulting field equations are

Cryur 11 + Cesttr 22 + Cssur 33 + (Cra + Cee)uz12 + (Ci3 + Css)uz 13 = 0,
Cootr 2 + Ceptr 11 + Casttz 33 + (Ciz + Cos)ut112 + (Coz + Cas)uz 23 = 0,
Cssuz 33 + Cssuz g + Caguiz 0 + (Ci3 + Css)uy 10 + (Caz + Caa)unpz = 0.

Define the Fourier transform as

7)== [ rtmexpliciman

and taking Fourier transforms of Eqs. (5) with respect to x; and x, gives
(Cllf% + Céﬁég)ﬁl — Cssity 33 + £1E,(Cra + Cep)ita +1&1(Cy3 + Css)itz 3 = 0,
18y (Cra + Ceo )ity + (Co6&; + Ca&3)iity — Caglin 3z + 18 (Coz + Caa )itz 3 = 0,
1&(Ci3 + Css)it 3 +1E(Coz + Caa)iins + (Cssé% + C44§§)L73 — Cs3ui333 = 0.

Now assume the solution in the form

u A
flz = A2 exp(imx3).
U3 Aj

Substituting (8) into (7) gives

Cu £2 Ces 22 C12+Ces C12+C55
m + Css é C55 62 Css Gé Css < A, 0
C65 Cn 2 C23+C44 —
C44 61 Cyy 52 & Ay 0 =10
Cos 2 | Cu g2 As 0
Sym m? + C33 61 C3 &

Redefining the material constants as

by = Ci by = %’ by = Ces by = Cn bs = Css
C55 C55 C44 C44 C33

be — C44 b — Ciz + Cs by = Ci3 + Css by = Co3 + Cus
Cy’ Css Css Cu

and further defining
ey =by+by+bs—bi, e =by+by+bs—by, ey =bybs+ bibs+ bsbs — bybg,
€4 = byby + byby + bybs + bybs + bibg + bsbg + 2b1bghy — (bsbi + b1} + b3),
es = byby + bybg + bybs — babl, e = bibsbs, e7 = bybsbs + bybybs + bybzbs — bsb?,
es = babybs + babsbg + bibsbs — bebs, ey = bybybs
and setting the determinant of the coefficient matrix to zero gives a cubic equation in m? as

m® + (€& + ex&G)m* + (e8] + es &5 & + esE)m* + (e6E) + erE1E + esE1E + e9S) = 0.

()

(10)

(11)

(12)
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This equation has three roots for m? and six roots for m given by

m==+4/o;, j=1:3k=1:6. (13)
Substituting these roots back into the first two equations of (9) gives the ratio of the coefficients from
m* + bi&} + br& bré )& ArJA3\ [ mbsé,
5 5 = (14)
béiés m? + by&] + by&y | | A2/ 43 mbyC,
with the resulting transformed displacements given as
iy 6 [ (di/43),
U o= Z (42/A43), ¢ As, exp(imy (S, &2)x3). (15)
it =1 1

The six constants are determined from the boundary conditions for a point load on a half-space. The
condition that the displacements be finite far from the load indicates that only the roots with positive
imaginary parts be retained. The remaining three constants are determined from the stress boundary
conditions on the surface, which are

o13(x1,x2,0) =0,  023(x1,%,0) =0,  033(x1,x2,0) = —5(x1)0(x2). (16)

Substituting the stress—strain and strain—displacement relations, and taking Fourier transforms gives the
following equations:
3
D lmidi/43), = &)ds, =0,
k=1
3
> mi(42/43), — &)z, =0, (17)
k=1
3

—1i
Z[Clsfl(Al/A.%)k + C3&5(Ax/A43), — Cuamy]ds, = [
k=1
The remaining three constants are determined from Egs. (17), and thus the solution is obtained for the
Fourier transformed displacements, for the problem of a point load on an orthotropic half-space, in terms
of the transform parameters ¢; and ¢&,.

3. Solution of the contact problem

The above solution for the displacements due to a unit point load is integrated over the contact area and
contact pressure to obtain the displacements due to the contact loading, and then matched to the indentor
geometry. Willis conditionally assumes, and subsequently proves, that the contact area is an ellipse with

dimensions 2a; X 2a,, with values to be determined subsequently, and that the pressure distribution is given
by

w2 2 1/2
p(xl,xz):p()(l——é——%) . (18)

ay a3

The surface displacement is then given by

x/z x/z 1/2
u3<x1,xz,o>=//po(1——l——) Wy — ¥, % — ) dv| d), (19)
S
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where S denotes the contact area, and the surface displacement due to the point load is denoted as w, as
w(x1,x2) = us(xq,x2,0). (20)

While w has not been found explicitly, its Fourier transform is given in Eq. (15). Substituting the inverse
Fourier transform of the surface displacement into (19) gives

2 2 1/2 1 00 o0
us(x1,x,,0) Z/S /Po(l —);—%—);—2%> " [x [%W(fl,fz)exp[—i(fl(xl —x))
+ & (x —x5))]dé; dé, dxg dx). (21)

Willis reduces the above to a single line integral that can be carried out with numerical integration. The
integral becomes

2n 2
u3(x17x2a0) :PO% 1/~V(817la;72){1 - <nlx1+112xz> }d07 (22)
0 ap a
where
SE%, n, =cosB, n,=sinb. (23)
aj

The contact force is related to the peak contact pressure by

2
F = gp()ﬂfa]az. (24)
The relative displacement of the indentor and half-space can be expressed in the form
Wi+ Wy = o — (Ax% + Bx% + 2Hx1x3). (25)
In the special case of a rigid indentor
1 1
A=—, B=— 26
2R,’ 2R, (26)

and for an orthotropic material, where the axis of the elliptical contact area is aligned with the axes of
orthotropy,

L3, L 3 o 3y 3F NP o)
2R, 8a3’ 2R, 8aiai’ 8a;  \4VR, 211 )
where
2n 2n 2n
I =/ w(eny, n,)n; do, Izz/ w(en,,ny)n; do, 13=/ w(eny, 1,)do. (28)
0 0 0

From (27), it can be seen that

12_61% Rl —ngl
Il_a%Rz_ Rzl

Solving for a;, a,, and ¢ for a rigid spherical indentor gives

a— (R T = (2 R (L (30)
4 b 4 ) e 4R/ 2
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The solution algorithm for contact loading of an orthotropic half-space can then be written as follows:

Step 1. Select a starting value for ¢ (say ¢ = 1).
Step 2. Compute the integrals /; and I, of Eq. (28).

The integrals are computed by incrementing 60, using #;, = cos 0 and #, = sin 0. Then set £, = ¢cos § and
&, = sin . Compute the roots and solve for the coefficients A3, from Eq. (17). This gives

3
Weny, ) =y Ase. (31)
k=1

The integrals are then determined by numerically integrating these functions to get /; and I,.

Step 3. A new value of ¢ is determined from Eq. (29). This value can then be used in step 1, and steps
1-3 repeated until the solution for ¢ converges. This can be considered as a root finding pro-
blem for &. Any root finding algorithm (the simple bisection method was used here) can be
employed.

Step 4. Once a converged value of ¢ is obtained, the complete solution can be obtained by computing /3,
and using Eq. (30) to determine the size of the contact zone and the depth of the indentation for a
given contact force.

4. Illustration of determining contact parameters
4.1. Cubic media

Willis (1966) presents results for a special class of orthotropic materials, termed cubic media. This class
of materials has three independent material constants, and the stress—strain relationship is given by

011 A + 2#’ A A €11 023 u 0 0 2823
(%) = A A + 2,[1/ A th%) and 031 =10 U 0 2831 . (32)
033 A A A2 €33 a12 0 0 pu 2ep,

Because of the symmetry of the material properties, the contact area is a circle and ¢ = 1. As a specific
example, the computations above were carried out for values of E =70 GPa, v = 0.3 and u/y’' = 8. Thus
A=vE/(1+v)(1 —2v) =40.38 GPa, ¢ = E/2(1 +v) =26.92 GPa, and u = 215.38 GPa. Plots of the
functions f}, f>, and f3 (normalized by multiplying by E;; = E) that are the integrands of [y, L, and I,
respectively, are shown in Fig. 1. The values of the integrals are I, =1, = 7.117E — 3 GPa~!, and
I; = 1.423E — 2 GPa™'. These results agree with those presented by Willis (1966).

4.2. Transversely isotropic materials

Solutions for contact problems with transversely isotropic materials have been presented by a number of
authors, and thus offer an opportunity to compare with the present contour integration approach. A
general solution has been presented by Turner (1966), who shows that the contact zone and size can be
found from formulas similar to those for isotropic contact problems, if the isotropic modulus is replaced by
a combination of the transversely isotropic properties. Thus for normal contact

3RF\ '3 3F \°
= and 0= —— . 33
¢ <4E;1> (M‘eE;,) 33)
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0.6 T T T T

Normalized functions for integrals I, I,, and I,

0 0.2 0.4 0.6 0.8 1
Theta / pi

Fig. 1. Functions used in numerical contour integration for contact loading of a cubic media orthotropic material.

Turner defines the effective modulus as follows: Let

1/2 Ey
E,JE. —? 1+ (2%—1) — Ve (1 +vy)
= =L = = 4
o ( Ty ) and f ) ; (34)
then
. 2
7= (35) (3)

This effective modulus for transversely isotropic normal contact reduces to E/(1 —v?) for isotropic
materials. As a specific example, values of E, = 51.3 GPa, v,, = 0.292, E, = 12 GPa, v,, = 0.28, and G,, = 6
GPa were used. These values correspond to a transversely isotropic laminate of AS4 carbon fiber and epoxy
(Swanson, 1997). The resulting value from Eq. (35) is £}, = 14.61 GPa.

Comparable results can also can be calculated using contour integration as described above. However,
the first two equations of (17) are not independent. Letting the material properties approach the trans-
versely isotropic case shows that the coefficient corresponding to the middle root approaches zero. Thus
only the first and third of Eq. (17) need be used, to solve for the two remaining coefficients. Comparing Eqs.
(27) and (33) shows that

3/2
. 2113
E;, = ( 1‘3 . (36)

The functions for the integrals for this case are shown in Fig. 2, normalized as before by multiplying by E3;.
The numerical integration of these functions gives I} = I, = 6.843F — 2, I; = 0.1369 GPa~'. Using Egs. (27)
and (33), it can be seen that these values agree with Eq. (35), and thus the Turner and Willis numerical
contour integration results are in agreement.
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1 T T T T

Normalized functions for integrals I, I, and I,

0 0.2 0.4 0.6 0.8 1
Theta / pi

Fig. 2. Functions used in numerical contour integration for contact loading of a transversely isotropic material.

The transversely isotropic material is a special case, and can be solved using the Willis approach without
using numerical integration. The simplification of the material properties permits Eq. (12) to be written as

m’ e (& + E)mt + (& + E)m e+ 8) =0 (37)

permitting m to be solved for explicitly and the rest of the computation can then be carried out analytically,
as shown by Willis (1966). This approach then leads to the same answers as above.

Yang and Sun (1982) and Tan and Sun (1985) have proposed an approximation for the contact
deformation, by using the second of Eq. (33) with E* simply replaced by E.. The accuracy of this
approximation can be checked for transversely isotropic materials by comparing with the exact results
given here. The results of this comparison are shown in Fig. 3. Here the transversely isotropic material
properties used above are modified so that E,, G,., and v,, are all modified so that they uniformly approach
an isotropic material. Since the effective modulus of Eq. (35) depends on all of the properties and not just
E., the approximation of Sun et al. holds exactly only for the isotropic case, and decreases in accuracy
as E, differs from E,. This can be seen in Fig. 3. The error of the Sun et al. approximation is on the order of
22% for material properties typical of carbon fiber laminates.

4.3. General orthotropic material

The results given above are similar to those available in the literature, and have served primarily to
establish that the method is working properly. However the numerical contour integration procedure as
outlined above can be used to calculate the parameters of the contact problem for more general orthotropic
materials, and results of this type have not previously appeared in the literature.

The orthotropic material considered in the following is made up of a “well dispersed” laminate con-
sisting of various numbers of 0 and 90° plies of a carbon/epoxy material. The properties of a unidirectional
lamina are given in Table 1. Orthotropic properties are then calculated for other layups using standard
lamination theory. In all cases, the properties are then averaged through the thickness so that a single
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Fig. 3. Ratio of exact effective modulus to the approximation of Sun et al. for contact indentation of a transversely isotropic material.

Table 1

Material properties of an orthotropic lamina used in contact loading
Property Value Property Value
E11 127 GPa E33 12 GPa
Ezz 11 GPa G13 6 GPa
G]2 6.55 GPa G23 6 GPa
Vi2 0.28 Vi3 0.28

Vo3 0.28

equivalent orthotropic material is being considered. As an example, consider that of an orthotropic
material equivalent to a unidirectional lamina, with the x axis taken in the fiber direction or the 1, 1
direction of Table 1. Following the procedure described above gives a final converged value of ¢ = 1.069.
The functions f}, f>, and f; for this value of ¢ are shown in Fig. 4, and the resulting numerical integrations
give values of I} = 6.338E — 2, I, = 7.250E — 2, and I; = 0.1359 GPa~'. Substituting these values into Eq.
(30) gives the contact size and center indentation for a given contact force. It is interesting to note that even
with properties as directional as used in this example, with E,/E, = 11.5, the difference between the major
and minor axes of the elliptical contact area is about 7%.

Further calculations were performed using orthotropic properties obtained from lamination theory as
described above. The results from these calculations are shown in Fig. 5. Fig. 5 shows the ratio of the axes
of the elliptical contact area, a,/a;, as a function of the ratio of the in-plane moduli. Fig. 5 also shows two
additional parameters related to the contact size and the deflection at the center of the contact area. Eq. (30)
can be written as

3RF\ '3 3RF\'? 1
“ (T) B orai= <4E:;1> with Fa =g (%)
23
3F N\ T 3F : L2
4v/R 21, 4\/RE; (13/2)

The values of the effective moduli in these two equations are also plotted in Fig. 5.
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Fig. 4. Functions used in numerical contour integration for contact loading of an orthotropic material. The material has properties of a
unidirectional fiber composite.
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Fig. 5. Parameters of contact loading of orthotropic material from contour integration.

5. Stresses due to contact loading

Although some information on the stresses in the half-space due to the contact loading can be obtained
from the contour integrals, it is simpler to just use the pressure distribution and size of the contact zone
from the above, and then use the solution due to Pagano (1970) and Srinivas and Rao (1970), to obtain
more detailed information. As mentioned above, this latter approach gives a complete solution for a
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layered orthotropic material subject to arbitrary transverse pressure loading on the surface. The solution is
general with respect to the number of the layers, the orthotropic material properties, and the thicknesses of
the layers, but requires that the transverse displacement on the edges be zero, and that the normal stresses
on the edges be zero. These conditions are considered to represent simply supported edges. By selecting a
single layer that is large in the x and y directions and thick in the z direction with respect to the size of the
contact area, the solution can be made to approximate transverse pressure loading of a half-space. The
usual difficulty in applying this solution to contact problems is that the size and shape of the contact zone
and pressure distribution are typically not known. However, as shown above, these parameters of contact
loading of a half-space can readily be determined by using numerical contour integration.

The equations of the Pagano and Srinivas and Rao approach have been presented previously for the 3-D
case in Swanson (2000), and have been used for contact problems in Wu and Yen (1994) and Chao and Tu
(1999), and for 2-D contact in Swanson and Kim (2003). The details of the approach will not be repeated
here, but one particular point will be made.

In the Pagano and Srinivas and Rao solution the displacements are obtained in terms of products of
Fourier series in x and y and positive and negative exponentials in z, as

3 6
Upn (X, Y,2) = { ZA"”’” exp(siz) + ZAk’”” exp( — Sk_3Z)} cos = sin 2. (40)

=1 =2 a b

The terms with positive exponentials give rise to numerical difficulties, and limit the number of terms
that can be taken in the Fourier series. However, as shown for the 2-D case in Swanson and Kim (2003),
this can be easily overcome by introducing a new length coordinate and redefining the constants, as follows:
Let

{=h-z (41)

where /4 is the thickness of the layer. Substituting in the terms with positive exponentials in z gives, for
example,

Aexp(sz) = Aexp(s(h — {)) = Aexp(sh) exp(—s{) = A exp(—s{). (42)

Using this new coordinate enables the solution to be written as

3 6
_ mnx . nmw
Up (%, ,2) = { E A exp( — s:0) + E Apnn exp( — sk3z)} cos—a sin —by_ (43)
=1

k=4

Thus only terms with negative exponentials enter the solution, and numerical problems associated with the
positive exponentials are eliminated. The strains are obtained from derivatives of the displacements, noting
that

d d

dz  d¢’
The stresses are related to the strains by the stress—strain law.

The above approach was then employed to determine the displacements, stresses, and strains throughout
the orthotropic half-space for the contact problems previously considered. The first problem considered is
that of a rigid spherical indentor contacting a transversely isotropic half-space. A contact radius of 1 mm
was used for illustration, with the contact pressure distribution obtained from Egs. (18), (24), and (30). This
pressure distribution was then used as the transverse pressure loading. The geometry of the Pagano solution
is that of a finite 3-D rectangular solid, but values of the lateral dimensions and thickness on the order of 50
times the contact radius removes the effect of the finite geometry. It is possible, and was done here, to apply
the pressure distribution on both opposite faces of the solid so as to achieve an equivalent rigid boundary at
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the midplane, from symmetry. Fitting of the Fourier series expansions of the pressure was accomplished
using numerical Gauss integration of order 24 or 48.

A comparison of the surface displacements calculated in this way is shown in Fig. 6, along with the
profile of the spherical indentor, using the material properties previously used for the transversely isotropic
material of Fig. 2. It can be seen that the calculated displacement conforms closely with that of the indentor
within the contact zone. Values for the root-mean-square deviation and the maximum deviation of surface
displacement and indentor, normalized to the indentation depth, are on the order of 0.5% or less for typical
calculations, using on the order of 100 terms in the Fourier series expansions. Thus this seems to be a very
reasonable way to solve this contact problem. The Pagano solution can then be used to solve for all dis-
placement, strain, and stress components of interest. For example, the normal strain in a radial direction
along the top surface is shown calculated in Fig. 7. It can be seen that the strains are compressive in the
contact zone, but change to tensile just outside the contact region.

The next problem considered was an orthotropic material, with properties that correspond to a fiber
composite material with a [0;3/90,] layup, and averaged through the thickness to give E, = 116 GPa,
E, =22.7 GPa, G,, = 6.55 GPa, and v,, = 0.136. The through-the-thickness properties are given in Table 1
The elliptic contact zone and pressure loading obtained as shown in Figs. 4 and 5 along with Eqgs. (18), (24),
and (30) were used as input to the Pagano solution. The surface displacements calculated are shown in Fig.
8, along with the profile of the spherical indentor in both the x and y directions. Note that because of the
orthotropic properties, the contact zone is elliptic, with a»/a; equal to 1.042. It can be seen that the surface
displacements calculated in the contact zone agree very well with the indentor profile, with values for the
root-mean-square deviation and the maximum deviation of surface displacement and indentor, normalized
to the indentation depth, again on the order of 0.5% or less for typical calculations. All stress and strain
values are readily available, as in the previous problem. As an example, the loaded surface normal strains in
the x and y directions are plotted vs x and y, respectively in Fig. 9. Since the problem is not symmetric, these
normal strains are different from each other.

0.1 T T T T
0.08 —
E 0.06
el Edge of contact zone ~
€
9]
&
S 004 s
<
% Surface displacement
2

Spherical indentor profile

-0.02 ' : ' '
10 11 12 13 14 15

Fig. 6. Surface displacement determined from the Pagano solution in contact loading of a transversely isotropic material. Contact zone
size and pressure distribution taken from Willis contour integration. Displacement is seen to match the indentor profile.
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Fig. 7. Normal strain on loaded surface near the contact zone, calculated for a transversely isotropic material using the Pagano
solution. Center of the contact zone is at x = 15 mm.
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Fig. 8. Surface displacements determined from the Pagano solution in contact loading of an orthotropic material. Contact zone size
and pressure distribution are taken from Willis contour integration. Displacement is seen to match the indentor profile in both the
x and y directions, which are different because of the orthotropic material properties (E,/E, = 5.10, ay/a; = 1.042).
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Fig. 9. Normal strain on loaded surface along x and y axis, determined from the Pagano solution in contact loading of an orthotropic
material with E,/E, = 5.10. Contact zone size and pressure distribution are taken from Willis contour integration. Center of the
contact zone is at x = y = 15 mm.

6. Discussion

The major point of the present work is to show that detailed stress and strain distributions in contact
loading of orthotropic materials are easily obtained by using the numerical contour integration approach of
Willis (1966), to determine the size and shape of the contact area and pressure distribution, and then using
these values to determine the transverse loading that is needed for the approach of Pagano (1970) and
Srinivas and Rao (1970). The accuracy of the solution can be assessed in part by comparison with known
solutions such as for transversely isotropic materials and the depth of indentation for orthotropic materials,
and in part by comparing the calculated surface displacement with the indentor profile. The examples
shown indicate that good accuracy is achieved.

In the solution for contact of orthotropic materials shown in Figs. 5, 8, and 9, it is interesting to note that
the ratio of the axes of the elliptical contact area are not a strong function of the orthotropic material
properties. However the strains shown in Fig. 9 are significantly different in the x and y directions, and the
stresses (not shown) would show an even greater difference.

The use of a rigid spherical indentor in the example problems was employed so as to focus on the
essential steps in the approach. As is well known and discussed in Johnson (1985), for example, it is
straightforward to include a deformable orthotropic indentor, by simply including the deformation of the
indentor in Eq. (25). Further, the Willis solution is in principle applicable to general anisotropic materials,
where the angle between the contact ellipse and the x, y coordinate system becomes an additional unknown.
This angle could presumably be found by a root finding method similar to that used here to find the ratio of
the axes of the contact area. However the Pagano and Srinivas and Rao solution only holds for orthotropic
materials, so that other means, such as finite element analysis, would need to be used to determine the stress
distributions.

It is likely that the procedures displayed above will be useful to obtain approximate solutions for more
general geometries, such as contact loading of laminated materials with finite dimensions. For example,
Swanson and Kim (2003) used an empirical modification of the theoretical pressure distribution obtained
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from Chen (1969), to examine the effects of contact loading in orthotropic sandwich beams. This was
accomplished by using the modified pressure distribution in a 2-D version of the Pagano analysis, and then
minimizing the error between calculated surface displacement and indentor profile. The advantage is that
one can start with a thick beam (or plate) where the half-space analysis would be expected to give good
accuracy, and then systematically modify the geometry to be more specific to the actual finite thickness
structure of interest.

7. Summary and conclusions

The problem of contact loading of an orthotropic half-space is examined. It is seen that a procedure
outlined by Willis that uses numerical contour integration can be readily employed, along with iteration, to
determine several features of the contact analysis, such as the size of the elliptical contact area, the contact
pressure distribution, and the indentation depth. Example calculations were shown to compare with pre-
vious results for transversely isotropic materials, and the results show that good accuracy is achieved. New
results are presented for orthotropic materials. The contact area and contact pressure distribution are then
used with a solution for surface pressure loading of an orthotropic material by Pagano and Srinivas and
Rao to determine the stress and strain fields throughout the region. The results show that for orthotropic
materials under contact loading by a spherical indentor, the contact area is elliptical but differs from cir-
cular by only a modest amount, and that the stress and strain distributions differ significantly from that for
isotropic or transversely isotropic materials.
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